

WISKOTT-ALDRICH SYNDROME (WAS)

A rare, X-linked genetic disorder caused by mutations in the gene encoding the Wiskott-Aldrich Syndrome protein (WASp). This mutation results in combined T-cell and B-cell immunodeficiency, impairing the body's ability to fight infections. WAS primarily affects males and is characterized by a classic triad of symptoms: thrombocytopenia, eczema, and recurrent infections.

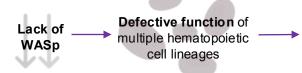
CLINICAL FEATURES

Classic Triad:

Combined T-cell and B-cell immunodeficiency

Petechiae (a distinguishing feature of WAS)

- Recurrent infections
 - Sinopulmonary infections
 - Severe viral infections such as varicella



- Risk for malignancy
 - Leukemia
 - Lymphoma

PATHOGENESIS

WASp is a protein found exclusively in **hematopoietic cells**.

Global dysregulation of immune function Abnormal inflammatory responses
Autoimmunity
Susceptibility to malignancy

In addition, WASp deficiency leads to platelet defects, causing destruction and bleeding.

DIAGNOSIS

Identification of key clinical features

- Microthrombocytopenia (low platelets and small in size)
- Eosinophilia
- Antibody pattern: low IgM, low/normal IgG, high IgA/IgE (opposite to ataxia telangiectasia)
- Low CD8+
- Poor vaccine responses

MANAGEMENT

- Immunoglobulin replacement.
- Hematopoietic stem cell transplant.
- Prophylactic antibiotics to prevent infections.
- Gene therapy: uses modified cells to correct the WASp deficiency.
- Platelet transfusions for severe bleeding.
- Splenectomy

